Solar Cells and Their Applications, 2nd Edition
Lewis M. Fraas, Larry D. Partain
ISBN: 978-0-470-44633-1
Hardcover
640 pages
October 2010

Hallmark Features

- Compiles work done by international pioneering experts writing on their respective fields of expertise.
- Reflects the dramatic advances in this field since the 1995 publication of the first edition.
- Provides an overview chapter allowing a wider range of readers to understand critical concepts driving the future of this rapidly evolving field.
- Uses basic physics and engineering principles, coupled with economic, market, business, investment and policy factors, to explain the current status of solar cells and their applications.
“The authors ably illustrate the rapid pace of innovation happening around the world in the pursuit of solar energy.”
Richard Swanson, Founder, President and Chief Technical Officer, SunPower Corporation

“A very nice high level treatment [of solar cell device physics] with some original insights.”
Martin Green, Scientia Professor, Photovoltaics Centre of Excellence, University of New South Wales

“This book is good look at the fundamentals of manufacturing photovoltaic cells and modules. With this understanding of the technology a reader can advance in the field and contribute to the growth of the industry.”
Roger Little, Founder, CEO, President, Spire Corporation

“[The device physics chapter] is an interesting approach to photovoltaic theory taking state-of-the-art cells and interpreting them in terms of theory.”
Keith Emery, Supervisor Device Performance, National Renewable Energy Laboratory

To Order:
Prepublication
BarnesandNoble.com $112
Amazon.com $123
Borders.com $140
Wiley.com $140


TABLE OF CONTENTS

I. Introduction: Solar Cells
1. Solar Cells: A Brief History and Introduction- Lewis Fraas, JX Crystals

II. Terrestrial Solar Cell Electricity Today
5. Crystalline Silicon Solar Cells and Modules – Leonid Rubin, Day4Energy
6. Thin Film Solar Cells and Modules – Robert Birkmire, Univ. Delaware
7. Terrestrial Module Fabrication and Assembly Technologies - Chris Bunner, Spire Corp.
10. Solar Cell Systems: Definition, Performance, & Reliability Jason Strauch, Sandia National Labs, USA

III. Terrestrial Concentrator Solar Cell Systems
12. Low Concentration Crystalline Silicon Systems – Lewis Fraas, JX Crystals
14. High Concentration Fresnel Lens Assemblies and Systems, Gerhard Peharz, Andreas Bett, Fraunhofer Institut für Solare Energiesysteme, Germany
15. High Concentration Cassengrainian Solar Modules and Arrays, Michael Ludowise, SoliFocus Inc, Lewis Fraas, JX Crystals
16. Concentrator Solar Cell Installations at UNLV, Suresh Sadineni, Robert Boehm, University of Nevada Las Vegas
17. Concentrator Solar Cell Field Installations – Francisca Rubio, Maria Martinez, and Pedro Banda, Institute of PV Concentrators, ISFOC, Spain

IV. Space

V. Other Aspects & Considerations
21. Challenges of Large-Scale Solar Cell Electricity Production, David Faiman, Ben-Gurion University of the Negev, Israel

VI. Thin Films & X-ray Imager Technologies
22. Flat Panel Detectors for X-Ray Imaging, Carl LaCasce, Chuck Blouir, Varian
23. Amorphous Silicon Transistors and Photodiodes, Robert A Street, Palo Alto Research Center
25. Photoconductor Digital X-ray imaging – George Zentai, Varian

VII. Summary
26. Summary, Conclusions, and Recommendations – Lewis Fraas, JX Crystals & Larry Partain, Varian